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1. Abstract

A Large Eddy Simulation of a 250 compression corner at M = 2.88 and
Re6 = 2 X 104 is performed using an Essentially Non Oscillatory (ENO)
scheme. The Favre filtered compressible Navier-Stokes equations are solved
using a Monotone Integrated Large Eddy Simulation (MILES) technique
on an unstructured grid of tetrahedral cells. The mean flow variables and
turbulent shear stress at the incoming flow are in good agreement with
experiment and DNS. The separation length scaled by the characteristic
scale [27, 31] shows agreement with the experiment. No pronounced pres-
sure plateau is observed compared with experiment at higher Reynolds
number.

2. Introduction

Supersonic flow over a compression corner is a classic problem embody-
ing all the difficulties of viscous/inviscid interactions, compressibility and
turbulence. A full understanding of this configuration is important for ef-
ficient aerodynamic and propulsion design. An extensive effort [1, 3, 4, 6,
7, 8, 10, 11, 15, 16, 17, 18, 20, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32] has
been focused on the study of this flow. However, traditional RANS meth-
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ods have not accurately predicted the heat transfer and skin friction coeffi-
cient[3, 4, 10, 18, 29, 30] in cases with large flow separation. In addition, the
scaled seperation length proposed in [27, 31] shows a significant deviation
from the experimental range in Fig. 1. A Very Large Eddy Simulation by
Hunt [11] for a 240 Mach 2.8 compression corner at Red = 106 revealed
that the size of the separation bubble correlates strongly with the shock
wave position. A DNS of 180 Mach 3 compression corner at Reo = 1685
implemented by Adams [1] indicated the effect of compressibility on the tur-
bulence structure in the interaction area. Rizzetta et al. [16, 17] performed
a DNS and LES of 180 compression corner and made full comparison with
DNS results by Adams [1].

This paper implements an ENO scheme for a 250 compression corner at
Mach 2.88 and Red = 2 x 104 to assess the capability of LES to accurately
predict the turbulence characteristics.

3. Methodology

The Monotone Integrated Large Eddy Simulation technique [2] is used to
solve the Favre-filtered compressible Navier-Stokes equations. The inviscid
fluxes are computed using the second order Godunov's method and the
viscous fluxes and heat transfer are obtained by application of Gauss' The-
orem to each face. An ENO scheme has been developed for the unstructured
grid. Our LES code is parallelized using domain decomposition in spanwise
direction with Portable Message Passing Interface Model Implementation
Mpich. The details are presented in [5, 14].

Allowing x, y and z to denote the streamwise, transverse and span-
wise directions, respectively, the computational domain is Lx = 16.03,
Ly = 3.43, and L, = 1.9253. The grid consists of 213 x 35 x 57 nodes
in the x, y and z directions, respectively. The reference quantities for non-
dimensionalization are length 3 (the incoming boundary layer thickness),
velocity Uo,, density p,,, static temperature Too and molecular viscosity
M (where the subscript cc denotes the freestream conditions upstream of
the compression corner). The tetrahedral grid is employed and stretched
in the y direction with a spacing of 0.0083 at the wall and the stretching
factor of 1.154. The grid is concentrated around the compression corner.
The details of the grid are shown in Table 1, wherein Ay+ = Ay/r7 with
the inner length scale 77 = v./u, (v, is the kinematic viscosity at the wall,
UT = T/p is the friction velocity, -rT is the wall shear stress and Pw is
the density at the wall). The theoretical values of u, and v, are obtained
from the combined Law of the Wall and Wake evaluated at y = 3 and the
power law of the relationship between temperature and kinematic viscosity,
respectively.
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TABLE 1. Details of Grids

Name Mach Ax+ Ay+ Az+ Ax/6 Ay/5 Az/b Tetras

at the wall at y=6

Theoretical value 2.88 24 1.9 8.1 0.1 0.14 0.034

LES 2.88 20.9 1.67 7.1 0.1 0.14 0.034 2,018,240

The inflow condition is obtained from a separate flat plate boundary
layer computation. The non-slip boundary condition is used to the adiabatic
wall. All the flow variables shown in the figures are averaged in time and

the spanwise direction. The time averaging period is set to three times the

flow-through time, where one flow-through time is defined as the time for
the freestream flow to traverse the computational domain. The details are
presented in [21].

4. Results

The oncoming flow characteristics are illustrated by the mean flow variables
in Fig. 3 and Fig. 4 and the Reynolds shear stress in Fig. 5. The comparisons
with experiments [28] and DNS show good agreement.

Fig. 2 shows the pressure contour distribution at x - y plane of z =

1.03. A strong separation and attachment shock wave is formed at the

compression corner leading to the higher pressure level after the shock.
The strong adverse pressure gradient causes the skin friction coefficient to

decrease dramatically and the flow separates. Downstream of the corner,
the overall increase in pressure and the decrease in Mach number cause the
skin friction coefficient to recover.

The computational results are shown in Fig. 6-Fig. 8 along with ex-

perimental data. The skin friction coefficient in Fig. 6 is compared with
the experiment at higher Reynolds number of Re 6 = 63560. According to
the Law of the Wall and Wake, the friction velocity is decreased with the
increase in Reynolds number, leading to the higher skin friction coefficient
in the computation. The time and spanwise averaged surface pressure pro-
file along the streamwise direction is compared with experiment at higher
Reynolds number in Fig. 7 and the pressure plateau is not observed. The
difference between the predicted and experimental surface pressure profile
may be attributable to the difference in Reynolds number.

The effect of Reynolds number on the separation length is plotted in
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Fig. 8. In this figure, the separation length is measured by connecting the
separation and attachment points at which the time and spanwise averaged
skin friction coefficients go to zero and then scaled by the characteristic
length (L,) proposed by Zheltovodov and Schuelein [27, 31]

L, = 42(ppl)3"1/i(1)

where J is the incoming boundary layer thickness, P2 is the pressure after
the shock in inviscid flow, Ppl is the plateau pressure obtained by the em-
pirical formula Ppl = p.(0.5Mc• + 1) [33] and M,, is the Mach number
in the uniform flow. Some LES and DNS results by other researchers are
also plotted in Fig. 8 for comparison. Our LES successfully predicts the
consistent trend with the experiment.

5. Conclusion

A 25' supersonic compression corner at Mach 2.88 and Re6 = 2 x 104 has
been simulated using an Essentially Non Oscillatory (ENO) scheme. The
mean quantities in the incoming equilibrium flow show good agreement
with experiment. The separation length is consistent with the extrapo-
lated experimental trend. Computations at higher Reynolds number are in
progress.
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Figure 1. Separation length for RANS
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Figure 2. Instantaneous pressure contour
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